BUENA TARDE ESTIMADOS ESTUDIANTES LA SIGUIENTE PUBLICACIÓN CORRESPONDE AL OBJETIVO # 6 ES DE LA SEMANA # 15
Una función con dominio en un subconjunto de los reales es diferenciable en un punto si su derivada existe en ese punto; una función es diferenciable en un intervalo si es diferenciable en todos los puntos del intervalo.
Si una función es diferenciable en un punto , la función es continua en ese punto. Sin embargo, una función continua en , puede no ser diferenciable en dicho punto. En otras palabras, diferenciabilidad implica continuidad, pero no su recíproco.
La derivada de una función diferenciable puede ser, a su vez, diferenciable. La derivada de una primera derivada se llama derivada segunda. De un modo parecido, la derivada de una derivada segunda es la derivada tercera, y así sucesivamente. Esto también recibe el nombre de derivación sucesiva o derivadas de orden superior.
Fórmulas de derivadas inmediatas
Derivada de una constante
Derivada de
Derivada de función afín
Derivada de una potencia
Derivada de una raíz cuadrada
Derivada de una raíz
Derivada de suma
Derivada de de una constante por una función
Derivada de un producto
Derivada de constante partida por una función
Derivada de un cociente
Derivada de la función exponencial
Derivada de la función exponencial de base e
Derivada de un logaritmo
Derivada de un logaritmo neperiano
Derivada del seno
Derivada del coseno
Derivada de la tangente
Derivada de la cotangente
Derivada de la secante
Derivada de la cosecante
Derivada del arcoseno
Derivada del arcocoseno
Derivada del arcotangente
Derivada del arcocotangente
Derivada del arcosecante
Derivada del arcocosecante
Derivada del arcocosecante la función potencial-exponencial
Regla de la cadena
Gracias por sus aportes, excelente manera de explicar los metodos ,tanto en el aula com por este medio .
ResponderEliminarsuerte y saludos